# Stat 411/511

### INFERENCE IN THE SAMPLING MODEL

Sep 28 2015

### Announcements

### Today

A recap of statistical inference in the random sampling model

Wednesday: paired t-test

## Your turn

What terms did you highlight?

# An example of the statistical process in the random sampling model

We have a question.

Do textbooks cost more at the bookstore than on Amazon?

We translate this to a question about a **population** distribution.

What is the mean difference in price between Amazon and the bookstore, for all textbooks required in OSU classes? Is this mean bigger than zero?

We can't/won't/don't collect data on the whole population, but instead get a sample from the population and use properties of the sample to estimate properties of the population.

The average price difference in our sample of size, n=100, is \$10 with a sample standard deviation of \$5. With 95% confidence we estimate that OSU textbooks on Amazon cost between \$9 and \$11 less than at the bookstore.

### Random sampling model

Single population



chem 101 Amazon price: \$89 Bookstore price: \$91 Difference: \$3

iane eyre Amazon price: \$7 Bookstore price: \$13 Difference: \$5

intro bio Amazon price: \$124 Bookstore price: \$123 Difference: -\$1

Sample



sample differences

distribution of Amazon price minus bookstore price for our sample of **OSU** books

### Histograms and distribution functions

A histogram is a graphical representation of the distribution of a **finite** set of numbers.

the distribution of a **finite** set of numbers.

To find the number of observations that were in a given range we add the heights of the bars.



Sometimes you'll see a smooth curve as a representation of a population distribution. Think of it like a histogram with infinitely small bin width, and infinitely many observations.

Areas under the curve represent probabilities.



technically, this is called a probability density function, ST521







### Statistical Inference

Population inference is using a sample to infer properties of the population.

For the textbooks: using the sample average to infer the population mean

This is statistically justified as long as:

observations are sampled at random from the population of interest.

Chance enters the study through the act of randomly taking a sample.

This is one of two "mechanisms of chance" we will cover.

The key to making inferences in the random sampling model is the **relationship** between the population distribution and the sampling distribution.

What is a sampling distribution?

### Parameters, Statistics and Estimates

| Naı | me |
|-----|----|
|-----|----|

#### **Definition**

#### **Examples**

#### **Parameter**

(of a population, or of a model)

An **unknown** value in a probability model

Population mean, µ (mu) Population standard deviation, σ (sigma)

#### **Statistic**

(of a dataset)

Something you can calculate from data

Sample average,  $\overline{Y}$  (y bar) or XSample standard deviation, SD or s

#### **Estimate**

(of a parameter)

for a parameter

A statistic used as a guess The sample average is an estimate of the population mean.

### Sampling Distribution

**Sleuth:** histogram of all values for the statistic from all possible samples that can be drawn from a population

Nature Article: Sample parameters have their own distribution called the sampling distribution, which is constructed by considering all possible samples of a given size.

**OpenIntro:** distribution of the point estimates based on samples of a fixed size from a certain population.



**b** Imagine we take a sample of size n=5 from this population. One example would be {1, 9, 17, 20, 26}, it's sample average is 14.6. But that is only one possible sample.

c Imagine all the other possible samples. For each sample find it's sample average and make a histogram of these sample averages. This is the sampling distribution of the sample average.



# Facts about the sampling distribution for the sample average

Regardless of the shape of the population distribution, the sampling distribution:

- will have the same mean as the population distribution  $\mu_{\overline{X}} = \mu$
- **2** have a smaller standard deviation  $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
- and it's shape will be closer to a Normal distribution than the population distribution (how close depends on the sample size and how close the population distribution was to Normal).

#### **Central Limit Theorem**

The key to making inferences in the random sampling model is the **relationship** between the population distribution and the sampling distribution.

Ok, but we don't know  $\mu$ ,  $\sigma$  or the shape of the population distribution, so we don't know exactly what the sampling distribution is.

If we did, we wouldn't be asking a question about the population.

A common way to proceed is to **assume** the sampling distribution is Normal.

### The Normal distribution

A particular distribution shape.

Defined by a mathematical function.

Completely specified by it's mean (center) and standard deviation (spread).

Useful approximation to many distributions, but, very few things are exactly Normal.

#### 68-95-99.7% rule:

If data is Normally distributed, 68% of observations will be within 1 standard deviation of the mean, 95% within 2 sds, 99.7% within 3 sds.

### Your turn



### Next time

Use the facts about the sampling distribution for the **sample average**, to construct a range of likely values for the **population mean**.

Did today's material feel foreign? Read Chapter 4 in OpenIntro:

http://www.openintro.org/stat/down/OpenIntroStatSecond.pdf