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Announcements

My office hours:

Mondays 11am 255 Weniger

Thursdays 3-5pm 3003 Cordley




Help with Statistics Classes 
Kidder M111, Fall Term 2015 

Students in ST 201, 314, 351, 352, and 411/511 may obtain help during any of the hours listed below (starting the 
second week). The class listed in parentheses below the Teaching Assistant’s name has priority during that period. 

 

Time Mon Tues Wed Thurs Fri 

0800-0900 
(8:00-9:00) 

Dane Skinner 
(ST 352)  Shaoshan Liao 

(ST 411/511)   

0900-1000 
(9:00-10:00) 

Dane Skinner 
(ST 352) 

Chunxiao Wang 
(ST 351) 

Shaoshan Liao 
(ST 411/511) 

Joe Maurer 
(ST 351) 

Chunxiao Wang 
(ST 351) 

1000-1100 
(10:00-11:00)  Caley Johns 

(ST 351)  Sam Engle 
(ST 351)  

1100-1200 
(11:00-12:00) 

Sam Engle 
(ST 351) 

Caley Johns 
(ST 351) 

Casey Bausell 
(ST 351) 

Si Liu 
(ST 351)  

1200-1300 
(12:00-1:00) 

Spencer LeDoux 
(ST 411/511) 

Matt Higham 
(ST 351) 

Casey Bausell 
(ST 351)  Casey Stevens 

(ST 351) 

1300-1400 
(1:00-2:00) 

Chris Comiskey 
(ST 411/511) 

Ben Brintz 
(ST 411/511) 

Laura Gamble 
(ST 201)  Dan Garmat 

(ST 351) 

1400-1500 
(2:00-3:00) 

Trevor Ruiz 
(ST 201) 

Chris Comiskey 
(ST 411/511) 

Laura Gamble 
(ST 201)   

1500-1600 
(3:00-4:00) 

Trevor Ruiz 
(ST 201) 

Peter Rise 
(ST 351) 

Yiran Wang 
(ST 352) 

Meng Mei 
(ST 314)  

1600-1700 
(4:00-5:00)  Peter Rise 

(ST 351) 
Yiran Wang 

(ST 352) 
Meng Mei 
(ST 314)  

1700-1800 
(5:00-6:00) 

Matt Higham 
(ST 351)  Alyssa Pedersen 

(ST 201)   

1800-1900 
(6:00-7:00)      

 



Last time

population distribution

sample

population inference

histograms

probability distributions

sampling distributions



Today

The sampling distribution for the 
sample average

Normal distribution

Using the sampling distribution for 
the sample average to construct a 
likely interval for the population 
mean



Sampling Distribution
Sleuth: histogram of all values for the statistic 
from all possible samples that can be drawn 
from a population

Nature Article: Sample statistics have their 
own distribution called the sampling 
distribution, which is constructed by 
considering all possible samples of a given size.

OpenIntro: distribution of the point estimates 
based on samples of a fixed size from a certain 
population.
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POINTS OF SIGNIFICANCE

Importance of being 
uncertain
Statistics does not tell us whether we are right. It tells 
us the chances of being wrong.

When an experiment is reproduced we almost never obtain exactly 
the same results. Instead, repeated measurements span a range of val-
ues because of biological variability and precision limits of measuring 
equipment. But if results are different each time, how do we determine 
whether a measurement is compatible with our hypothesis? In “the 
great tragedy of Science—the slaying of a beautiful hypothesis by an 
ugly fact”1, how is ‘ugliness’ measured?

Statistics helps us answer this question. It gives us a way to quanti-
tatively model the role of chance in our experiments and to represent 
data not as precise measurements but as estimates with error. It also 
tells us how error in input values propagates through calculations. 
The practical application of this theoretical framework is to associate 
uncertainty to the outcome of experiments and to assign confidence 
levels to statements that generalize beyond observations.

Although many fundamental concepts in statistics can be under-
stood intuitively, as natural pattern-seekers we must recognize the 
limits of our intuition when thinking about chance and probability. 
The Monty Hall problem is a classic example of how the wrong 
answer can appear far too quickly and too credibly before our eyes. 
A contestant is given a choice of three doors, only one leading to 
a prize. After selecting a door (e.g., door 1), the host opens one of 
the other two doors that does not lead to a prize (e.g., door 2) and 
gives the contestant the option to switch their pick of doors (e.g., 
door 3). The vexing question is whether it is in the contestant’s 
best interest to switch. The answer is yes, but you would be in good 
company if you thought otherwise. When a solution was published 
in Parade magazine, thousands of readers (many with PhDs) wrote 
in that the answer was wrong2. Comments varied from “You made 
a mistake, but look at the positive side. If all those PhDs were 
wrong, the country would be in some very serious trouble” to “I 
must admit I doubted you until my fifth grade math class proved 
you right”2.

The Points of Significance column will help you move beyond an 
intuitive understanding of fundamental statistics relevant to your 
work. Its aim will be to address the observation that “approximate-
ly half the articles published in medical journals that use statistical 
methods use them incorrectly”3. Our presentation will be practical 
and cogent, with focus on foundational concepts, practical tips and 
common misconceptions4. A spreadsheet will often accompany each 
column to demonstrate the calculations (Supplementary Table 1). 
We will not exhaust you with mathematics.

Statistics can be broadly divided into two categories: descriptive and 
inferential. The first summarizes the main features of a data set with 
measures such as the mean and standard deviation (s.d.). The second 
generalizes from observed data to the world at large. Underpinning 
both are the concepts of sampling and estimation, which address the 
process of collecting data and quantifying the uncertainty in these 
generalizations.

To discuss sampling, we need to introduce the concept of a popula-
tion, which is the set of entities about which we make inferences. The 
frequency histogram of all possible values of an experimental variable 
is called the population distribution (Fig. 1a). We are typically inter-
ested in inferring the mean (+) and the s.d. (m) of a population, two 
measures that characterize its location and spread (Fig. 1b). The mean 
is calculated as the arithmetic average of values and can be unduly 
influenced by extreme values. The median is a more robust measure 

of location and more suitable for distributions that are skewed or oth-
erwise irregularly shaped. The s.d. is calculated based on the square 
of the distance of each value from the mean. It often appears as the 
variance (m2) because its properties are mathematically easier to for-
mulate. The s.d. is not an intuitive measure, and rules of thumb help us 
in its interpretation. For example, for a normal distribution, 39%, 68%, 
95% and 99.7% of values fall within ± 0.5m, ± 1m, ± 2m and ± 3m. These 
cutoffs do not apply to populations that are not approximately normal, 
whose spread is easier to interpret using the interquartile range.

Fiscal and practical constraints limit our access to the popula-
tion: we cannot directly measure its mean (+) and s.d. (m). The best 
we can do is estimate them using our collected data through the 
process of sampling (Fig. 2). Even if the population is limited to 
a narrow range of values, such as between 0 and 30 (Fig. 2a), the 

random nature of sampling will impart uncertainty to our estimate 
of its shape. Samples are sets of data drawn from the population  
(Fig. 2b), characterized by the number of data points n, usually 
denoted by X and indexed by a numerical subscript (X1). Larger 
samples approximate the population better.

To maintain validity, the sample must be representative of the popu-
lation. One way of achieving this is with a simple random sample, 
where all values in the population have an equal chance of being 
selected at each stage of the sampling process. Representative does 
not mean that the sample is a miniature replica of the population. In 
general, a sample will not resemble the population unless n is very 

LocationPopulation distribution Spreada b

σ

μ

Population
distribution Samples

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Sample
means

Sampling distribution of
sample means

X1 = [1,9,17,20,26]
X2 = [8,11,16,24,25]
X3 = [16,17,18,20,24]

... ...

X1 = 14.6
X2 = 16.8
X3 = 19.0

a b c

σ Xσ

μ Xμ

0 30 0 30

Figure 1 | The mean and s.d. are commonly used to characterize the 
location and spread of a distribution. When referring to a population, these 
measures are denoted by the symbols + and m.

Figure 2 | Population parameters are estimated by sampling. (a) Frequency 
histogram of the values in a population. (b) Three representative samples 
taken from the population in a, with their sample means. (c) Frequency 
histogram of means of all possible samples of size n = 5 taken from the 
population in a.

a Here’s a population


b Imagine we take a sample of size n=5 from this 
population.  One example would be {1, 9, 17, 20, 26}, 
it’s sample average is 14.6.  But that is only one 
possible sample. 


c Imagine all the other possible samples. For each 
sample find it’s sample average and make a histogram 
of these sample averages. This is the sampling 
distribution of the sample average.
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size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside + ± m (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5. The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/3n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).
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large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus m).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, +X–   and mX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
mX–  , is quite a bit smaller than that of the population, m .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by +X–   = + and mX–   = m/3n. The terms in the second relationship are 
often confused: mX–   is the spread of sample means, and m is the spread 
of the underlying population. As we increase n, mX–   will decrease (our 
samples will have more similar means) but m will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate mX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 

Population distribution
Normal Skewed Uniform Irregular

n = 3

n = 5

n = 10

n = 20

Sampling distribution of sample mean

Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.
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size drawn from the distribution in Figure 2a. As n is increased, 
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closely approximate + and m. The s.e.m. (s/3n) is an estimate of mX–  and 
measures how well the sample mean approximates the population mean.
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Your Turn: What was the point of this figure?



Facts about the sampling distribution for the 
sample average

Regardless of the shape of the population 
distribution, the sampling distribution:

will have the same mean as the population 
distribution

have a smaller standard deviation

and it’s shape will be closer to a Normal 
distribution than the population distribution

(how close depends on the sample size and how 
close the population distribution was to Normal).

Central Limit Theorem

µX = µ

�X =
�p
n

1
2
3



Your turn
Which histogram is most likely a histogram 
of the sampling distribution of the sample 
average for a sample of size 30?


population

a b

c d



Your turn

Which histogram is most likely a histogram 
of a sample of size 300 from the population?

population

a b

c d



If we did, we wouldn’t be asking a question about the population.

Ok, but we don’t know μ, σ or the shape of the population 
distribution, so we don’t know exactly what the sampling 

distribution is.

The key to making inferences in the 
random sampling model is the 
relationship between the 
population distribution and the 
sampling distribution.

A common way to proceed is to assume the sampling

distribution is Normal.



The Normal distribution
A particular distribution shape.

Defined by a mathematical function.

Completely specified by it’s mean (center) and 
standard deviation (spread).

Useful approximation to many distributions, but, 
very few things are exactly Normal.

68-95-99.7% rule: 
If data is Normally distributed, 68% of observations 
will be within 1 standard deviation of the mean, 
95% within 2 sds, 99.7% within 3 sds.



Your turn

Which of these are Normal distributions?

a b

c d



Next up..
Use the facts about the sampling 
distribution for the sample average, 
to construct a range of likely values 
for the population mean.

Let’s get started by assuming the 
sampling distribution for the sample 
is average is Normal.



µX = µ

�X =
�p
n We know it would be unusual to 

see a value two standard 
deviations from the mean.


How unusual?

In about 95% of possible samples, our sample 
average would fall within two standard deviations of 

the mean of the sampling distribution.

In about 95% of possible samples, 

and X < µ+ 2�/
p
nX > µ� 2�/

p
n

Rearrange: in about 95% of 
possible samples,
 µ < X + 2�/

p
n

µ > X � 2�/
p
n and

sampling distribution 

of the sample average



In a picture…
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With 95% confidence, the population mean 
is between X � 2�/

p
n X + 2�/

p
nand 

We still don’t know σ, but we could estimate 
it with the sample standard deviation, s.

Of course, this all hinges on our 
assumption that “the sampling distribution 
is Normal” is true.


a 95% confidence interval
in 95% of possible samples, this interval covers the true 

population mean.

correct


there is 95% chance the population mean is in this interval.

incorrect


Z-based confidence interval



Recap
Population inference is using a sample to learn 
about a population.

This process relies on knowing how the sampling 
distribution of our statistic relates to the population 
distribution and our parameters of interest.

If we are interested in the population mean, 
assuming the sampling distribution of the sample 
average is Normal, leads us to a 95% confidence 
interval for the mean of the population,


X ± 2
�p
n

know σ, one sample Z-based CI



Standard deviation of the mean

The standard deviation of the sampling distribution of the 
sample average for a sample of size n, is the population 
standard deviation divided by the square root of the 
sample size.

sample mean

sample average X

SDX =
�p
n

This tells us how much the sample average varies 
from it’s mean across different possible samples.

But we usually don’t know σ

Often we estimate the population standard 
deviation with the sample standard deviation.

I.e. we estimate σ with s.



Standard error of the mean

If we plug in s for σ in the standard deviation of the 
sampling average, we called it the standard error.

The standard error of the sample average is an 
estimate of the standard deviation of the 
sampling distribution of the sample average.

sample mean

sample average X

SEX =
sp
n

It’s an estimate of how much the sample average 
varies from it’s mean across different samples.



Next time…

…assuming the sampling distribution of 
the sample average is Normal… 
When is this true? 
What is the effect of using s, instead of 
σ? 

The t-based confidence interval


