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Your turn
We are going to do a two sample t-test.

Put these datasets in order from:

“I would be very worried about the Normality assumption” to 

“I would not be worried about the Normality assumption at all”

n1 = n2 = 5n1 = n2 = 50 n1 = n2 = 5000



Today

The two other assumptions

Outliers & Resistance

The log transform

Quiz: you will need to calculate a 
pooled standard deviation, you will 
need a calculator/R.



Equal standard deviations



Equal population standard 
deviations

We assumed that σ1 = σ2 and estimated the 
value with the pooled standard deviation.

If your sample sizes are roughly equal, the 
t-test will be fairly robust to unequal 
population standard deviations.

If your sample sizes are not equal, the t-
test will not be valid with unequal 
population standard deviations.

Paired t-test: taking differences is probably not appropriate if 
the two groups have different spreads.



Equal population SDs

Check: by looking at histograms of 
samples.

Remedy: 

use a transformation or

or always use a Welch t-test 



Independence



Independence

Observations must be independent of 
one another for t-tools to be valid.

If knowledge about one observation 
allows us to make a better guess 
about another observation, there is a 
lack of independence.

If there is dependence, t-tools give 
misleading results.



Two common types of dependence

Cluster effects 
There is some kind of subgroup within 
groups, and subjects in the same 
subgroup are more similar.

Serial effects 
Measurements are made in time (or 
space) and observations made close in 
time (or space) are more similar.



Independence

Check: read study design carefully, 
and look for sources of 
dependence.

Remedy: 

use more complicated methods 
(ST512)

The one solution we already know about is the paired t-test



Assumptions for using the randomization test

You have a randomized experiment

(i.e. you have assigned subjects to 
treatment groups completely at 
random)




Assumptions for using the two sample t-test instead 
of the randomization test

You have a randomized experiment

(i.e. you have assigned subjects to treatment groups 
completely at random) and


the samples aren’t too non-Normal

(same deal as two sample t,  you can get away with 
more non-Normality when you have more data)


i.e. you want a p-value using the 

null hypothesis: there is no difference between the treatments 



Assumptions for using the two sample CI for difference in means 
instead of the randomization CI for an additive treatment effect

You have a randomized experiment

(i.e. subjects were assigned to treatment groups 
completely at random) and

the samples aren’t too non-Normal

(same deal as two sample t,  you can get away with 
more non-Normality when you have more data)


you assume the additive treatment model 

(implies equal standard deviations of treatment 
outcomes)

In practice, you look at all the same 
diagnostic plots as the two sample t-test

or you want a p-value using the 

null hypothesis: the additive treatment effect is zero.



Your turn
Consider the numbers:

1, 2, 3, 5, 9, 10

What is their average? 

What is their median?


Imagine there was a mistake in recording the numbers and 
you were actually given:

1, 2, 3, 5, 9, 100

What is their average? 

What is their median?




Resistance

A procedure is resistant if it doesn't 
change much when a few subjects 
change.

The average is not resistant.

The median is resistant.

The t-statistic is not resistant.

It can be sensitive to a few outlying 
observations



Outliers should not be deleted unless 
you know they are mistakes

If there are outliers retry the analysis 
without them.

If the conclusions don't change, leave 
them in and say so.

If the conclusions do change, 
investigate further, report both 
analyses. 

OR

Use a resistant method (Chap 4)



Log transform
Sometimes assumptions can be met by 
transforming the data.  

A particularly useful transformation is the 
logarithmic transformation.

Useful, when variation increases with mean, 
or right skewed data.

Values must be positive to take logarithm.

Always use the same transformation on both 
groups.





Cloud seeding
Display 3.1 p. 57

Rainfall (acre-feet) for days with and without cloud seeding
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Rainfall from unseeded days (n = 26)

Rainfall from seeded days (n = 26)

Randomized experiment



qplot(Rainfall, data = case0301) +  
facet_wrap(~ Treatment, ncol = 1)



qplot(log(Rainfall), data = case0301)  
+ facet_wrap(~ Treatment, ncol = 1)



Using the log transform
details on Mon

original scale

acre feet of rainfall

log scale

log(acre feet of rainfall)log transform


 data

Recheck assumptions

Conduct analysis

(t-tests etc.)

if things aren’t improved, don’t proceed

Two Sample t-test 

data:  log(Rainfall) by Treatment  
t = -2.5444, df = 50, p-value = 0.01408 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -2.0466973 -0.2408651  
sample estimates: 
mean in group Unseeded   mean in group Seeded  
              3.990406               5.134187  

back transform

estimates and 


confidence intervals

but not p-values

Make 
interpretations


t-tests over here tell us about differences  
in means of the populations of log response

once back transformed those t-tests tell us 

about ratios of medians of the populations of response

With 95% confidence seeding clouds 

increases rainfall between 1.27 and 7.74 

times that of unseeded clouds.



