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Log transform
Sometimes assumptions can be met by 
transforming the data.  

A particularly useful transformation is the 
logarithmic transformation.

Useful, when variation increases with mean, 
or right skewed data.

Values must be positive to take logarithm.

Always use the same transformation on both 
groups.



Using the log transform
original scale


acre feet of rainfall
log scale


log(acre feet of rainfall)log transform

 data

back transform

estimates and 


confidence intervals

but not p-values

t-tests over here tell us about differences  
in means of the populations of log response

once back transformed those t-tests tell us 

about ratios of medians of the populations of response

Recheck assumptions
if things aren’t improved, don’t proceed

Conduct analysis

(t-tests etc.)

Two Sample t-test !
data:  log(Rainfall) by Treatment  
t = -2.5444, df = 50, p-value = 0.01408 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -2.0466973 -0.2408651  
sample estimates: 
mean in group Unseeded   mean in group Seeded  
              3.990406               5.134187  

Make 
interpretations


With 95% confidence seeding clouds 

increases rainfall between 1.27 and 7.74 

times that of unseeded clouds.




Cloud seeding
Display 3.1 p. 57

Rainfall (acre-feet) for days with and without cloud seeding
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Randomized experiment



qplot(Rainfall, data = case0301) +  
facet_wrap(~ Treatment, ncol = 1)



qplot(log(Rainfall), data = case0301)  
+ facet_wrap(~ Treatment, ncol = 1)



Facts about log

We will only use the natural logarithm 

(log to the base e, ln)


exp(log(x)) = x 

log(AB) = log(A) + log(B)

exp(A + B) = exp(A)exp(B)



Cloud seeding

After a log transform, we are 
satisfied a two sample t-test is 
appropriate.

(the two sample t p-value and CI, will be a good 
approximation to the p-value and CI from a 
randomization test on log rainfall)



Procedure

1. Take the logarithm of the data, 

      Z1 = log (Y1), Z2 = log(Y2)


2. Perform t-test using Z1 and Z2. If the p-value is 
small we have evidence the additive treatment 
effect on the log outcome is not zero


3. We estimate the multiplicative treatment effect 
on the untransformed outcome is exp(z2̅ - z1̅)

CI's need to be "back"-transformed too.

 for randomized 
experiments



Why multiplicative?
δ = the additive treatment effect on (outcome) of 

being assigned to (Group 2) compared to (Group 1)  

(definition of treatment effect)
Z2 = Z1 + δ 

(back transform 
to original scale)exp( Z2 ) =  exp( Z1 + δ ) 

(property of exp)exp( Z2 ) =  exp( Z1 ) exp ( δ )


(definition of Z1 & Z2)Y2 = Y1 exp ( δ )
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t.test(log(Rainfall) ~ Treatment, data = case0301,      

        var.equal = TRUE) 

!

Two Sample t-test 

!
data:  log(Rainfall) by Treatment  

t = -2.5444, df = 50, p-value = 0.01408 

alternative hypothesis: true difference in means is not 
equal to 0  

95 percent confidence interval: 

 -2.0466973 -0.2408651  

sample estimates: 

mean in group Unseeded   mean in group Seeded  

              3.990406               5.134187  

We estimate the treatment effect of seeding a cloud is to increase 
rainfall by 3.13 times the rainfall from an unseeded cloud.

There is moderate evidence against the hypothesis 
that treatment effect on log rainfall for Seeding is 

zero compared to Not Seeding (two sample t-test, 
pvalue = 0.014).


exp(5.13 - 3.99) = 3.13



exp(0.2408) = 1.27

exp(2.0466) = 7.74

With 95% confidence seeding clouds 
increases rainfall between 1.27 and 
7.74 times that of unseeded clouds.


95 percent confidence interval: 

 -2.0466973 -0.2408651  

this is the wording for a multiplicative treatment effect



Statistical Summary
There is moderate evidence the seeding treatment is not the 
same as the control treatment (two sample t-test of log rainfall, 
two sided p-value = 0.014).

!
Alternative: There is moderate evidence against the hypothesis 
that treatment effect on log rainfall for Seeding is zero 
compared to Not Seeding (two sample t-test, pvalue = 0.014).

!
We estimate the treatment effect of seeding a cloud is to 
increase rainfall by 3.13 times that of unseeded clouds.

!

With 95% confidence seeding clouds increases rainfall 
between 1.27 and 7.74 times that of unseeded clouds.



What about a randomization test?
We could do one on the Rainfall scale: 
> oneway_test(Rainfall ~ Treatment, data = case0301,  

              distribution = approximate(B = 9999)) 

!
 Approximative 2-Sample Permutation Test 

!
data:  Rainfall by Treatment (Seeded, Unseeded) 

Z = 1.9421, p-value = 0.0439 

alternative hypothesis: true mu is not equal to 0 

!
Or the log Rainfall scale: 
> oneway_test(log_rainfall ~ Treatment, data = case0301,  

               distribution = approximate(B = 9999)) 

!
 Approximative 2-Sample Permutation Test 

!
data:  log_rainfall by Treatment (Seeded, Unseeded) 

Z = 2.4179, p-value = 0.0134 

alternative hypothesis: true mu is not equal to 0 

p-value is close to the two-sample t. 

On this scale the two sample t-test is a 

good approximation to the randomization 
test.

different p-value, but similar conclusion. 
There is moderate evidence that the 
seeding treatment does something.

We wouldn’t be happy talking about an 
additive treatment model on this scale.

We would be happy talking about an 
additive treatment model on this scale.

This test is legitimate here (we satisfied 
the assumptions), but we are being more 

vague about what the treatment does.

This test is also legitimate here (we satisfied 
the assumptions), and we could even use 
the corresponding confidence intervals.



Procedure

1. Take the logarithm of the data, 

      Z1 = log (Y1), Z2 = log(Y2)


2. Perform t-test using Z1 and Z2. If the p-
value is small we have evidence the treatment 
effect on the log outcome is not zero


3. We estimate the treatment effect is to 
multiply the outcome by exp(Z̅2 - Z̅1)  CI's 
need to be "back"-transformed too.

 for randomized 
experiments



Procedure
1. Take the logarithm of the data, 

      Z1 = log (Y1), Z2 = log(Y2)


2. Perform t-test using Z1 and Z2. If the p-value 
is small we have evidence the population mean 
of log(Y1) differs to log(Y2)


3. We estimate the median value of population 2 
is exp(Z̅2 - Z̅1) times the median value of 
population 1.  CI's need to be "back"-
transformed too.

 for observational studies
i.e. two samples from two populations



Why ratio of medians?

exp(mean of log(Y2) - mean of log(Y1)) ≠ mean(Y2) - mean(Y1)

!

exp(median of log(Y2) - median of log(Y1)) = median of Y2 / median of Y1

!

Hidden assumption: for the t-test to tell us about the 
median of the transformed data, the population mean of 

the log outcome must be the same as the population 
median of the log outcome.


!
I.e. we assume the population is symmetric on the log scale



pop1

pop2

0 10 20 30
Response

On the log scale,

the populations are 

symmetric with the 

same spread.


pop1

pop2

−2.5 0.0 2.5 5.0
log(Response)

On the original 
scale,


the populations are 

skewed with the 
different spreads.




Statistical Summary
!
There is moderate evidence that the median response of population 1 is 
not the same as the median response of population 2 (two sample t-test 
on log transformed response, two sided p-value = 0.014).

!
(Alternative) There is moderate evidence that the mean log response of 
population 1 is not the same as the mean log response of population 2 
(two sample t-test, two sided p-value = 0.014). 

!
We estimate that the median response of population 1 is XX times the 
median response of population 2.

!
With 95% confidence, the median response of population 1 is between 
XX and YY times that of population 2.


replace bold terms with correct context and values

for observational study


