Stat 411/511

ALTERNATIVES TO THE T-TOOLS

Oct 26 2015

Charlotte Wickham

Two independent samples

Two sample t-test Randomization test Wilcoxon Rank Sum

Today

Weds

Doesn't assume Normality and is resistant to outliers

Levene's test

Test for equal population standard deviations

Welch's t-test

t-test without assumption of equal standard deviations

Two paired samples

Paired t-test Sign test

Doesn't assume Normality and resistant to outliers, quick

Wilcoxon Signed Rank test

Doesn't assume Normality and resistant to outliers, more efficient

Friday

Wilcoxon Rank Sum

aka Rank Sum Test aka Mann Whitney Test

Ranks

Instead of using the raw data, we convert the values to ranks.

- Ranks are **resistant** to outliers since an outlying value will only ever be 1 unit away from next value.
- Removes information about shape (no Normality assumption)
- The test statistic, T, for the Wilcoxon Rank Sum test is the sum of the ranks in the smaller group.

Null hypothesis

Assuming the two populations have the same shape and same standard deviation, i.e. the only difference is a shift in center.

Null: The populations distributions are the same. This implies the population **means/medians** are equal (or the difference in population means/medians is zero)

OR

Null: The additive treatment effect is zero

If the two populations don't have the same shape, the test is still valid but it tests,

Null: The population distributions are the same, $P(Y_2 > Y_1) = 0.5$

Alternative: Observations from one population tend to be larger than observations from the other population, $P(Y_2 > Y_1) \neq 0.5$.

case0401

Space shuttle O-ring failures

Are there more O-ring failures at lower temperatures?

Challenger launched on Jan 27 1986 at 29°F

Null: The population mean/median number of O-ring failures at Cool temperatures is the same as at Warm temperatures.

One-sided alternative

Incidents Launch Temp.

- 0 Warm
- 1 Warm
- 1 Warm
- 2 Warm
- 1 Cool
- 1 Cool
- 1 Cool
- 3 Cool

Your turn Step 1:

Using data from both groups, order the observations from smallest response to largest response.

Put the number of incidents in order from smallest to largest, and indicate whether each number is from a Warm or Cool launch

Incidents	Launch
0	Warm
1	Cool
1	Cool
1	Cool
1	Warm
1	Warm
2	Warm
3	Cool

Step 2:

Add a new column called "order", with the numbers from 1 to $n_1 + n_2$.

0	Warm	1
0	Warm	2
0	Warm	3
0	Warm	4
0	Warm	5
0	Warm	6
0	Warm	7
0	Warm	8
0	Warm	9
0	Warm	10
0	Warm	11
0	Warm	12
0	Warm	13
0	Warm	14
0	Warm	15
0	Warm	16
0	Warm	17
1	Cool	18
1	Cool	19
1	Cool	20
1	Warm	21
1	Warm	22
2	Warm	23
3	Cool	24

Step 2:

Add a new column called "order", with the numbers from 1 to $n_1 + n_2$.

Step 3:

Get ranks by searching for ties, and replacing the order, with the average order for the observations with the same value.

Incidents Launch order

0	Warm	1
0	Warm	2
0	Warm	3
0	Warm	4
0	Warm	5
0	Warm	6
0	Warm	7
0	Warm	8
0	Warm	9
0	Warm	10
0	Warm	11
0	Warm	12
0	Warm	13
0	Warm	14
0	Warm	15
0	Warm	16
0	Warm	17
1	Cool	18
1	Cool	19
1	Cool	20
1	Warm	21
1	Warm	22
2	Warm	23
3	Cool	24

Your turn

Replace the order of the observations that are tied, with their average order.

Hint: the average of the integers m, m + 1, ..., n is (m + n)/2.

case0401\$rank <- rank(case0401\$Incidents)</pre>

Incidents	Launch	order	rank
0	Warm	1	9
0	Warm	2	9
0	Warm	3	9
0	Warm	4	9
0	Warm	5	9
0	Warm	6	9
0	Warm	7	9
0	Warm	8	9
0	Warm	9	9
0	Warm	10	9
0	Warm	11	9
0	Warm	12	9
0	Warm	13	9
0	Warm	14	9
0	Warm	15	9
0	Warm	16	9
0	Warm	17	9
1	Cool	18	20
1	Cool	19	20
1	Cool	20	20
1	Warm	21	20
1	Warm	22	20
2	Warm	23	23
3	Cool	24	24

Step 4:

Add the ranks of the smallest group

Test statistic, T = 20 + 20 + 20 + 24= 84 just like a randomization test, except since this isn't a randomized experiment, we call it a permutation test.

exact p-value

Elements of	No. of	Value	Value of				
smaller group	groupings	of T	$\overline{Y}_1 - \overline{Y}_2$				
0000	2380	36	-0.5				
$0 \ 0 \ 0 \ 1$	3400	47	-0.2				
0002	680	50	0.1				
$0 \ 0 \ 1 \ 1$	1360	58	0.1				
0003	680	51	0.4				
0012	680	61	0.4				
$0\ 1\ 1\ 1$	170	69	0.4				
0013	680	62	0.7				
0112	170	72	0.7				
$1\ 1\ 1\ 1$	5	80	0.7				
0023	136	65	1.0				
0113	170	73	1.0				
1112	10	83	1.0				
0123	85	76	1.3				
1113	10	84	1.3				
1123	10	87	1.6				
10626							

List all the ways of reassigning the observed "Incidents" to the "Cool" group.

What proportion have as extreme values of T?

 $T \ge 84$

(10 + 10) / 10626 = 0.0018

There is convincing evidence the number of Oring failures at Cool temperatures tends to be larger than the number of failures at Warm temperatures (Wilcoxon rank-sum, exact one-sided p-value =0.0018).

asymptotic p-value

assume the sampling distribution of test statistic is Normal

Fine if sample sizes are large, and not too many ties.

Under the null the test statistic will:

- have mean, $n_1 \bar{R} = 4 * (1 + 24)/2 = 50$
- 2. have standard deviation,

 $s_R sqrt((n_1n_2)/(n_1 + n_2))$

= sd(case0401\$rank) * sqrt(4*20/(4 + 20)) = 10.3

- **3.** be approximately Normal when scaled:
 - (T mean(T)) / sd(T)
 - 1 pnorm((84 0.5 50) / 10.3) = 0.006continuity correction, section 4.2.3

```
Warning message:
In wilcox.test.default(x = c(1, 1, 1, 3), y = c(0, 0, 0,
0, 0, 0, :
    cannot compute exact p-value with ties
```

<u>library(coin)</u> wilcox_test(Incidents ~ Launch, data = case0401, alternative = "greater", distribution = "exact")

Exact Wilcoxon Mann-Whitney Rank Sum Test

```
data: Incidents by Launch (Cool, Warm)
Z = 3.301, p-value = 0.001882
alternative hypothesis: true mu is greater than 0
> wt <- wilcox_test(Incidents ~ Launch, data = case0401,
+ alternative = "greater", distribution = "exact")
> statistic(wt, "linear")
Cool 84
```

exact

Your turn

IONI MIII

Fill in the column for Wilcoxon Rank Sum on the test summary worksheet (posted on web).