Stat 411/511

ONE WAY ANOVA

Nov 4 2015

Charlotte Wickham

Summary from Weds

Comparing two groups

A single comparison of two group means

When you have multiple groups:

- •Do the usual two-sample t-test but,
- use all groups to get the pooled standard deviation
- •the degrees of freedom are n I.

for now you have to do it "by hand" not using t.test

Consider these three datasets.

Which would you say gives more evidence of the groups coming from populations with different means?

A one way ANOVA compares the variation in group averages to the variation of the response within groups

One-way ANOVA Are any of the means different?

An application of the extra sum of squares F-test

One-way ANOVA

Null: the population means are the same (OR all treatment effects are the same).

 $\mu_1 = \mu_2 = \dots = \mu_I = \mu$

Alternative: At least one of the population means is different.

This is the traditional null hypothesis in a one-way ANOVA

The extra sum of squares F-test can be used for other null hypotheses too.

One-way ANOVA

Null: the population mean percentage of women in the venires are the **same for all** the judges.

 $\mu_{\text{Spock}} = \mu_{\text{A}} = \dots = \mu_{\text{F}} = \mu$

Alternative: At least one of the judges has a different population mean percentage of women.

An extra Sums of Squares F-test compares **two models**

Full model: a model that fully describes the set of alternatives.

One-way ANOVA: All the means could be different, a.k.a. separate means model

Restricted model: a restriction of the full model imposed by the null hypothesis.

One-way ANOVA: All the means are the same, a.k.a. equal means model.

Fit both models

The **Extra Sum of Squares F-test**, compares how well the models fit, by comparing the **sum of squared residuals** for each model.

The **residual** is the distance between the observation and our estimate for it's mean.

Residual_{ij} = Y_{ij} - Estimate of μ_i

Sum of squared residuals aka Residual Sum of Squares (RSS):

For each model, square each residual and add them up

Residuals in a one-way ANOVA

Single mean model residuals

(null/restricted model):

- = Observation best guess for a single mean
- = Observation \overline{Y} overall average

d.f. = n - 1

Separate means model residuals

(full model):

- = Observation best guess for group mean
- = Observation \overline{Y}_i group average

d.f. = n - I

With each Residual Sum of Squares there is an associated degrees of freedom = number of observations - number of parameters for the mean

sum of squares illustration

-20

-10

10

0 group_average - overall_average

residuals from equal means model

gives total SS

residuals from separate means model gives within group SS

> group averages compared to overall average

gives between group SS

= total SS - Within group SS

- > case0502\$group_average <- with(case0502, ave(Percent, Judge))</pre>
- > case0502\$overall_average <- with(case0502, mean(Percent))</pre>
- > head(case0502)

	Percent	Judge	group_average	overall_average
1	6.4	Spock's	14.62222	26.58261
2	8.7	Spock's	14.62222	26.58261
3	13.3	Spock's	14.62222	26.58261
4	13.6	Spock's	14.62222	26.58261
5	15.0	Spock's	14.62222	26.58261
6	15.2	Spock's	14.62222	26.58261

Total sum of squares > with(case0502, sum((Percent - overall_average)^2)) [1] 3791.526 1 mean d.f. = n - 1

Within group sum of squares

> with(case0502, sum((Percent - group_average)^2))
[1] 1864.445
I means

Between group sum of squares 3791.526 - 1864.445 = 1927.081

d.f. = (n-1) - (n - I)= I - 1

d.f. = n - I

Extra SS F-statistic for one way ANOVA

Extra Sum of Squares/Extra degrees of freedom $\hat{\sigma^2}_{\mathrm{full}}$ come back to F =

come back to this form

- $\mathsf{F} = \frac{\text{Between group SS/Between group d.f.}}{\text{Within group SS/Within group df}}$
- $\mathsf{F} = \frac{\text{Between group MSS}}{\text{Within group MSS}}$

Large values give evidence against the null hypothesis.

Under the null hypothesis (equal means model) has F-distribution with I - 1 & n-I degrees of freedom

The ANOVA table

Display 5.10

p.127

Analysis of variance table: a test for equal mean percents of women in venires of seven judges; Spock data

Large F stats give evidence against the null hypothesis.

Display 5.9

p. 126

Four F-distributions, having different degrees of freedom

To find the p-value for the F-test we always find the area to the right of the test statistic.