
One way ANOVA worked example.

Pre-existing Preferences of Fish Case Study 6.2 in Sleuth

Summary Statistics:

	Pair 1	Pair 2	Pair 3	Pair 4	Pair 5	Pair 6	Overall
Average	0.564	0.609	0.624	0.670	0.642	0.633	0.621
SD	0.090	0.125	0.223	0.143	0.094	0.177	0.154
Sample Size	16	14	17	14	9	14	84

We are going to perform a one-way analysis of variance to answer the question: Does the pair of males make a difference in the preference of the females for the males with yellow swordtails?

1. Read the study description in Sleuth 6.1.2. Are causal inferences possible? Are population inferences possible?

2.	Fill	in	the	h	lanl	KS:
			1110	\sim		νο.

The null hypothesis is that all groups have the _____.

The alternative hypothesis is that _____ one group has a different ____.

3. Fill in the blanks with a number:

In the reduced model we have to estimate ____ mean/s.

- 4. What is the **full model residual** for the female fish that spends 0.54 proportion of the time with the yellow sword male in Pair 1?
- 5. What is the **reduced model residual** for the female fish that spends 0.54 proportion of the time with the yellow sword male in Pair 1?
- 6. Calculate the pooled standard deviation, and it's degrees of freedom.

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots (n_I - 1)s_I^2}{(n_1 - 1) + (n_2 - 1) + \dots (n_I - 1)}}$$

In the full model we have to estimate ____ mean/s.

6. Find the within group sum of squares and the total sum of squares using the shortcuts from homework 6.

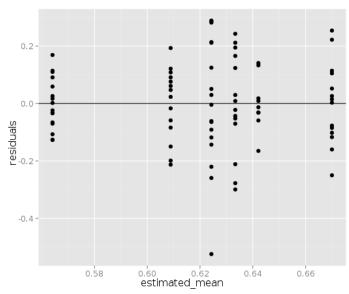
Within group sum of squares $= s_p^2 x$ (degrees of freedom for s_p)

Total sum of squares = $(Overall SD)^2 x (n - 1)$

8. Fill in the ANOVA table.

	Sum of squares	d.f	Mean Square	F-statistic	p-value
Between Groups					
Within Groups					
Total				•	

If the null h	nypothesis i	is true,	the F-statistic	will be	distributed	d like a	-distribution	with
and	_ degrees o	of freed	lom.					


The p-value can be found in R with: 1 - pf(_____, ____, ____)

9. Statistical summary. Fill in the blanks:

There is ______ evidence that the mean proportion of time spent with yellow sword male in different pairs are _____ (F-test, p-value = ____).

- 10. What are the three assumptions of the one-way ANOVA?
 - 1.
 - 2.
 - 3.

Which can you check by examining the plot below?

- 11. Imagine we want to compare the male fish of Pair 1 to those of Pair 5.
 - a. The estimated difference in mean proportion of time spent with yellow sword male in Pair 1 and Pair 5 is:
 - b. The standard error on the difference estimated in a. is:

$$SE_{\overline{Y}_2 - \overline{Y}_1} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

c. A 95% confidence interval for the difference in a. is:

(Hint: qt(0.975, 78) = 1.99)