Stat 411/511 LINEAR COMBINATIONS OF MEANS

Nov 13 2015

Charlotte Wickham

DA #2

Second question involves three two group comparisons.

A separate three sentence summary for each **is not required**.

Think about a table of the results plus a sentence or two summarizing them.

Only material prior to today is required for DA #2.

Preplanned comparisons: a few comparisons that directly answer the questions of interest. Start today

Unplanned comparisons: many comparisons are of interest, you often aren't sure which until you see the data. Multiple comparisons

Disability case study

	I	None	Amp	outee	Crut	ches	He	aring	V	/heelo	chair		Overall	
Average		4.9	4.	43	5.	92	4	.05		5.3	4		4.93	
SD		1.79	1.	59	1.	48	1	.53		1.7	5		1.72	
Sample Size		14	1	4	1	4		14		14			70	
	8 - 7 - 6 - 9 5 - 2 - 2 -								P	oole (d S d.f.	D : = (= 1.6 65	3,
		None	Amputee	Crutches Handicap	Hearir	ng Wheel	chair							

A linear combination of means

If we have I groups, a **linear combination** of the I means is:

$$V = C_1 \mu_1 + C_2 \mu_2 + C_3 \mu_3 + \dots + C_I \mu_I$$

where the C_i are constants

Preplanned comparisons can (often) be written as linear combinations of means.

Some examples

Two group comparison: Does group 1 have the same mean as group 2?

 $\mu_1 - \mu_2$ (C₁ = 1, C₂ = -1, C₃ = ... = C_I = 0)

Disability Study: Compare crutches and wheelchair to hearing and amputee.

$$\begin{split} &1/2(\mu_{crutches} + \mu_{wheelchair}) - 1/2(\mu_{hearing} + \mu_{amputee}) \quad \text{difference in average of means} \\ &(C_{crutches} = 1/2, \ C_{wheelchair} = 1/2, \ C_{hearing} = -1/2, \ C_{amputee} = -1/2) \\ &\textbf{Spock study: Does Spock's judge select fewer women than} \\ &\text{the other judges on average?} \\ &\mu_{Spock} - 1/6 \ (\mu_A + \mu_B + ... + \mu_F) \end{split}$$

 $(C_{\text{Spock}} = 1, C_{\text{A}} = -1/6, C_{\text{B}} = -1/6 = ... = C_{\text{F}} = -1/6)$

Find the linear combination for: **Disability study:** Does the average of the mean scores of the **mobility** disabilities equal the mean of the hearing disability?

Estimate

To estimate the linear combination of means we substitute in the sample averages:

$$\mathbf{g} = \mathbf{C}_1 \bar{\mathbf{Y}}_1 + \mathbf{C}_2 \bar{\mathbf{Y}}_2 + \mathbf{C}_3 \bar{\mathbf{Y}}_3 + \dots + \mathbf{C}_{\mathrm{I}} \bar{\mathbf{Y}}_{\mathrm{I}}$$

Disability Study: Compare crutches and wheelchair to hearing and amputee.

Estimate of $1/2(\mu_{crutches} + \mu_{wheelchair}) - 1/2(\mu_{hearing} + \mu_{amputee})$ = 0.5 $\overline{Y}_{crutches} + 0.5 \overline{Y}_{wheelchair} - 0.5 \overline{Y}_{hearing} - 0.5 \overline{Y}_{amputee}$ = 0.5 * 5.92 + 0.5 * 5.34 - 0.5 * 4.05 - 0.5 * 4.43 = 1.39

Standard Error

The **standard error** on the estimate on the linear combination of means is:

$$\operatorname{SE}_{g} = s_{p} \sqrt{\frac{C_{1}^{2}}{n_{1}} + \frac{C_{2}^{2}}{n_{2}} + \ldots + \frac{C_{I}^{2}}{n_{I}}} \quad \text{d.f.} = \mathsf{n} - \mathsf{I}$$

Disability Study: Compare crutches and wheelchair to hearing and amputee.

Standard error on estimate, g,

$$= s_p \operatorname{sqrt}(0.5^2/14 + 0.5^2/14 + (-0.5)^2/14 + (-0.5)^2/14)$$

= 1.63 sqrt(0.25/14 + 0.25/14 + 0.25/14 + 0.25/14)

= 0.436

Find the estimate and standard error of the linear combination:

 $\mu_{\text{Hearing}} - 1/3 (\mu_{\text{Amputee}} + \mu_{\text{Crutches}} + \mu_{\text{Wheelchair}})$

	None	Amputee	Crutches	Hearing	Wheelchair	Overall
Average	4.9	4.43	5.92	4.05	5.34	4.93
SD	1.79	1.59	1.48	1.53	1.75	1.72
Sample Size	14	14	14	14	14	70

Pooled SD = 1.63, d.f. = 65

Testing a hypothesis t-ratio = $(g - \chi) / SE_g$

Has Student's t-distribution with n - I degrees of freedom

Disability Study: Compare crutches and wheelchair to hearing and amputee.

Null: The average mean score for crutches and wheelchair minus the average mean score for hearing and amputee is zero, $\gamma = 0$.

t-statistic = $(g - 0) / SE_g$

= 1.39 / 0.436

= 3.189

under the null, g/SE_g has a Student's t-distribution with n - I d.f.

 $2^{*}(1 - pt(3.189, 65)) = 0.002$ 2-sided p-value

Constructing a 95% CI

$g \pm qt(0.975, d.f.) \times SE_g$

Disability Study: 95% CI for difference in average mean of crutches and wheelchair to hearing and amputee.

 $g \pm qt(0.975, d.f.) \times SE_g$

- $= 1.39 \pm qt(0.975, 65) 0.436$
- $= 1.39 \pm 2.00 \times 0.436$
- $= 1.39 \pm 0.872$
- = (0.518, 2.262)

The average of mean scores for crutches and wheelchair is between 0.52 and 2.26 points higher than the average of mean score for hearing and amputee (95% confidence).

 $SE_g = 0.50$ g = -1.18

Test the null hypothesis that the linear combination,

 $\mu_{\text{Hearing}} - 1/3 (\mu_{\text{Crutches}} + \mu_{\text{Wheelchair}} + \mu_{\text{Amputee}}) = 0$

Find a 95% CI for the linear combination:

 $\mu_{\text{Hearing}} - 1/3 (\mu_{\text{Crutches}} + \mu_{\text{Wheelchair}} + \mu_{\text{Amputee}})$

Hint: qt(0.975, 65) = 2.00

Linear combinations in R replicate "by hand" calculations (lab) Or...

library(ggplot2)
library(Sleuth3)

first fit the individual group means model
full_model <- lm(Score ~ Handicap - 1, data = case0601)</pre>

set up the constants, checking the order using the full model
(groups <- names(coef(full_model)))</pre>

[1] "HandicapAmputee" "HandicapCrutches" "HandicapHearing"
[4] "HandicapNone" "HandicapWheelchair"

```
C <- matrix(c(-1/3, -1/3, 1, 0, -1/3), nrow = 1,
dimnames = list(1, groups))
```

> C

HandicapAmputee HandicapCrutches HandicapHearing HandicapNone HandicapWheelchair -0.3333333 -0.333333 1 0 1 0 -0.3333333

```
> comp2b <- glht(full_model, linfct = C)</pre>
```

> summary(comp2b)

```
Simultaneous Tests for General Linear Hypotheses
```

```
Fit: lm(formula = Score ~ Handicap - 1, data = case0601)
```

```
Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

1 == 0 -1.1810 0.5039 -2.343 0.0222 *

----

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)
```

```
> confint(comp2b)
```

```
Simultaneous Confidence Intervals
```

```
Fit: lm(formula = Score ~ Handicap - 1, data = case0601)
```

```
Quantile = 1.9971
95% family-wise confidence level
```

```
Linear Hypotheses:

Estimate lwr upr

1 == 0 -1.1810 -2.1874 -0.1745
```

All pairwise differences in means for the disability study

95% confidence level	Lower	Upper
	Estimate lwr	upr
Amputee - None == 0	-0.47143 -1.70405	0.76119
Crutches - None == 0	1.02143 -0.21119	2.25405
Hearing - None == 0	-0.85000 -2.08262	0.38262
Wheelchair – None == 0	0.44286 -0.78976	1.67548
Crutches - Amputee == 0	1.49286 0.26024	2.72548
Hearing - Amputee == 0	-0.37857 -1.61119	0.85405
Wheelchair - Amputee == 0	0.91429 -0.31833	2.14690
Hearing - Crutches == 0	-1.87143 -3.10405	-0.63881
Wheelchair - Crutches == 0	-0.57857 -1.81119	0.65405
Wheelchair - Hearing == 0	1.29286 0.06024	2.52548

Imagine you have 100 tests for the difference between two group means.

In each test you reject the null hypothesis if the p-value is < 0.05.

If the null hypothesis is in fact true in all cases, how many tests would you expect to reject the null?

What is the problem?

Individual error rate: the probability of incorrectly rejecting the null hypothesis in a single test, α .

Familywise (or experimentwise) error rate: the probability of incorrectly rejecting **at least one** null hypothesis in a family of tests, α_E .

If $\alpha = 0.05$, $\alpha_E > 0.05$, and α_E gets bigger the more comparisons you make.