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Quiz #4

This weekend, don’t forget.

Usual format…



Assumptions
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The ideal normal, simple linear regression model

µ{Y | X}

Explanatory Variable (X)

Response
Variable

(Y)

MODEL ASSUMPTIONS
1. There is a normally distributed sub-population of responses for each

value of the explanatory variable
2. The means of the sub-populations fall on a straight line function of

the explanatory variable
3. The sub-population standard deviations are all equal (to σ)
4. The selection of an observation from any of the sub-populations is

independent of the selection of any other observation



1. Normal subpopulation distribution of 
response at each value of explanatory.

2. The means of the subpopulations fall 
on a straight line function of the 
explanatory variable.

3. The subpopulations have the same 
standard deviation, σ. (constant spread)

4. Observations are independent.

Assumptions



Your turn
Is linear regression appropriate?



Put a hat on it!
In statistics it is common to distinguish the 
parameter from it's estimate by putting a hat 
on it.


β0̂ is the estimate of the intercept

β1̂ is the estimate of the slope

μ̂{Y|X} is the estimate of the mean response 
as a function of the explanatory variable.



Fitted values

μ̂{Y|X} = β0̂ + β1̂X

Once we have estimated the slope and intercept, our 
estimate of the mean function is the line defined by 
these estimates,

The fitted value describes the estimated mean for an 
observation.  For the ith observation the fitted value is,

fittedi = μ̂{Yi|Xi} = β0̂ + β1̂Xi



Residuals
The residual is the difference 
between the observed response and 
it's fitted value

residuali = Yi - fittedi = Yi - (β0̂ + β1̂Xi)

This is the same definition we used in the ANOVA.  The fitted 
value in the ANOVA case, is the group average in the full 
model, and overall average in the equal means model.



Your turn

Big Bang Case Study

Label the fitted value for the observed nebula with a velocity of  650 km/sec and distance of 
0.9 parsecs.


Draw in the residual for the same observation.



Your turn

Calculate the fitted value, and 
residual for the same observation. 

(velocity = 650 km/sec, distance = 0.9 parsecs)

β0̂ = 0.399 β1̂ = 0.0014



One approach to estimating the 
intercept and slope, is to choose the 
intercept and slope that minimizes the 
sum of the squared residuals.

It turns out this method is "optimal" in a 
statistical sense under our assumptions.


Least squares

Of all linear unbiased estimates the least 
squares estimates have the lowest variance.

the line that gives the least possible sum of squared residuals



Least squares estimates

The least squares estimates can be 
found using calculus.  They are:


X̅ and Y̅ are the sample averages of the 
explanatory and response variables



In R

> lm(Distance ~ Velocity, data = case0701) 

Call: 
lm(formula = Distance ~ Velocity, data = 
case0701) 

Coefficients: 
(Intercept)     Velocity   
   0.399098     0.001373   

β0̂ β1̂



It's also easy to get residuals and fitted values in 
R

> fit <- lm(Distance ~ Velocity, data = case0701) 
> residuals(fit) 
           1            2            3            4            5            6  
-0.600497351 -0.763249684 -0.006616517 -0.039992674  0.129894974  0.177947738  
           7            8            9           10           11           12  
-0.223685447 -0.297249686 -0.269790963 -0.043685440 -0.010979035  0.542089847  
          13           14           15           16           17           18  
-0.391506710  0.294961346 -0.185566293 -0.662199437  0.083080560  0.014433755  
          19           20           21           22           23           24  
 0.314433707 -0.017116833  0.914433731  0.433906091  0.502552897  0.104401424  
> fitted(fit) 
         1          2          3          4          5          6          7  
0.63249735 0.79724969 0.22061652 0.30299269 0.14510503 0.09705227 0.67368544  
         8          9         10         11         12         13         14  
0.79724969 0.76979096 0.67368544 0.81097905 0.35791013 1.29150669 0.60503863  
        15         16         17         18         19         20         21  
1.08556627 1.66219944 1.01691946 1.08556627 1.08556627 1.71711688 1.08556627  
        22         23         24  
1.56609391 1.49744710 1.89559858  
>  
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Facts about the sampling distributions of the least squares estimates of 
slope and intercept in the ideal normal model (from statistical theory)

β0

β1

CENTER1

SHAPE

The shape of the sampling distribution
is normal

3SAMPLING DISTRIBUTION 
OF β1

SAMPLING DISTRIBUTION 
OF β0

The mean of the sampling 
distribution is β1

SD β̂1( ) σ 1
n 1–( )sX

2
----------------------=

2 SPREAD

CENTER1
The mean of the sampling 

distribution is β0
SD β̂0( ) σ 1

n
--- X2

n 1–( )sX
2

----------------------+=

2 SPREAD

SHAPE

The shape of the sampling distribution
is normal

3

where sX
2 is the sample variance 

of the X’s

Normal

Centered around 
their respective 

parameter 

(also known as unbiased)

SD depends on σ 
and the variation in 

the explanatory 
variable. SD gets 

smaller with bigger 
samples.

slope

intercept

sX = sample standard 

     deviation of X’s



Need to estimate σ
Remember σ is the standard deviation of the 
subpopulation at each value of the explanatory 
variable (a parameter). It measures the variation 
of the response around it’s mean.

The residuals provide an estimate of this 
variation,




Degrees of freedom
General rule 
Degrees of freedom associated with a 
set of residuals is the number of 
observations minus the number of 
parameters for the mean.

μ̂{Y|X} = β0̂ + β1̂X
In simple linear regression:

Two parameters
Degrees of freedom = n - 2



Need to estimate σ
Remember σ is the standard deviation of 
the subpopulation at each value of the 
explanatory variable.

The residuals provide a measure of this 
variation,




> sum_sq_residuals <- sum(residuals(fit)^2) 
> df <- length(residuals(fit)) - 2 
> df 
[1] 22 
> sqrt(sum_sq_residuals/df) 
[1] 0.4049588

> summary(fit) 

Call: 
lm(formula = Distance ~ Velocity, data = case0701) 

Residuals: 
    Min      1Q  Median      3Q     Max  
-0.7632 -0.2352 -0.0088  0.2072  0.9144  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.3990982  0.1184697   3.369  0.00277 **  
Velocity    0.0013729  0.0002274   6.036 4.48e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 0.405 on 22 degrees of freedom 
Multiple R-squared: 0.6235, Adjusted R-squared: 0.6064  
F-statistic: 36.44 on 1 and 22 DF,  p-value: 4.477e-06 

OR



Standard errors
Plug in estimates into formula for standard deviations

d.f. = n - 2

SE�̂0
= �̂

s
1

n
+

X
2

(n� 1)s2X



> summary(fit) 

Call: 
lm(formula = Distance ~ Velocity, data = case0701) 

Residuals: 
    Min      1Q  Median      3Q     Max  
-0.7632 -0.2352 -0.0088  0.2072  0.9144  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.3990982  0.1184697   3.369  0.00277 **  
Velocity    0.0013729  0.0002274   6.036 4.48e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 0.405 on 22 degrees of freedom 
Multiple R-squared: 0.6235, Adjusted R-squared: 0.6064  
F-statistic: 36.44 on 1 and 22 DF,  p-value: 4.477e-06 



Your turn
We are less certain about our estimate of the 
slope when we have a larger standard error.

Will we be less or more certain about the slope for:

larger sample size, n?

larger subpopulation variation, σ?

larger variation in observed explanatory values, sx?



Three types of inference

Inference on the slope or intercept


Inference about the mean response 
(at a given explanatory value)


Prediction of a new response           
(at a given explanatory value)

uncertainty comes from sampling error in a single parameter

uncertainty comes from sampling error in both parameters

uncertainty comes from sampling error in both parameters

and variability in subpopulations


