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DA #2
Avoid story telling…

First I …, then I … .  I noticed …. so I….


Although the residuals showed clear 
non-Normality, the large sample size 
gives robustness to this violation of the 
ANOVA assumptions.  The residuals 
were also examined for ….



Three types of inference

Inference on the slope or intercept


Inference about the mean response 
(at a given explanatory value)


Prediction of a new response           
(at a given explanatory value)

uncertainty comes from sampling error in a single parameter

uncertainty comes from sampling error in both parameters

uncertainty comes from sampling error in both parameters

and variability in subpopulations
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Questions that might be of interest in a regression setting

Is the true slope zero? If yes, then the mean response 
doesn’t depend on the explanatory variable. 1



Questions that might be of interest in a regression setting

Is the true intercept zero? If yes, then the mean 
response is zero when the explanatory variable is zero.

1



Questions that might be of interest in a regression setting

What’s the mean response when the 
explanatory variable = X0?

X0 = 600

put a likely range on the 

center of the subpopulation
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Questions that might be of interest in a regression setting

What’s a likely response for an observation 
when the explanatory variable = X0? (Prediction)

X0 = 600

put a likely range on an observation 

from the subpopulation
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For all three types of inference

has a t-distribution with n-2 
degrees of freedom

Estimate� True value

SEEstimate

Leads to...
Estimate± tn�2(0.975)⇥ SEEstimate95% CI/PIs:

t-ratio =

Estimate

SEEstimate

Tests of the null hypothesis: true value = 0

and p-values like usual 
I.e. 2*(1 - pt(abs(t.stat), n-2))

under our assumptions

but you wouldn’t test in   3



Inference about slope or intercept
uncertainty comes from sampling variability in a single 

parameter

1



From last lecture we can find estimates and their 
standard errors for the slope and intercept

t-statistics for the null: β0 = 0,

(β0̂ - 0) / SEβ0̂    

and p-values like usual 
I.e. 2*(1 - pt(abs(t.stat), n-2))

Individual 95% confidence intervals:

β0̂ ± tn-2(0.975) SEβ0̂

β1̂ ± tn-2(0.975) SEβ1̂

Same for β1



Some examples of tests

Null: The slope is zero.

(The mean response doesn't depend on the 
explanatory variable).


Null: The intercept is zero.

Null: The slope is 1.  

(problem specific, maybe you expect a specific 
slope from theory)

Alternatives will generally be ".... is not equal to ...."



> summary(fit) 

Call: 
lm(formula = Distance ~ Velocity, data = case0701) 

Residuals: 
    Min      1Q  Median      3Q     Max  
-0.7632 -0.2352 -0.0088  0.2072  0.9144  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.3990982  0.1184697   3.369  0.00277 **  
Velocity    0.0013729  0.0002274   6.036 4.48e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 0.405 on 22 degrees of freedom 
Multiple R-squared: 0.6235, Adjusted R-squared: 0.6064  
F-statistic: 36.44 on 1 and 22 DF,  p-value: 4.477e-06 

p-value, 

for null hypothesis 

parameter =  0

two-sided

t-statistic  =

Estimate/Std. Error

> library(Sleuth3) 
> fit <- lm(Distance ~ Velocity, data = case0701) 



Your turn
Using this output from R, construct a 
95% CI for the slope and intercept.

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.3990982  0.1184697   3.369  0.00277 **  
Velocity    0.0013729  0.0002274   6.036 4.48e-06 ***

 qt(0.975, 22) = 2.073873



> confint(fit) 
                   2.5 %      97.5 % 
(Intercept) 0.1534070224 0.644789404 
Velocity    0.0009012456 0.001844627

With 95% confidence, the mean distance of a nebula with 
zero velocity is between 0.153 and 0.645 parsecs from 

Earth.

With 95% confidence, an increase in velocity of 
1km/sec is associated with an increase in mean 

distance between 0.0009 and 0.0018 parsecs.



Inference about mean response
uncertainty comes from sampling variability 


in both parameters
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Estimate of the mean

μ̂{Y|X0} = β0̂ + β1̂X0

We’ve already seen to estimate the 
mean response at an explanatory 
value, say X0, we just substitute our 
estimates into the line equation,

To make inferences we need to know 
the standard error on this estimate.



Standard error on the estimated mean

d.f. = n -  2

Once again, the estimate minus the parameter, 
divided by the standard error, has a Student's 
t-distribution with n - 2 degrees of freedom.

β0̂ + β1̂X0 ± tn-2(0.975) SE μ̂{Y|X0}

Leads to 95% CI

Depends on how far our new point is from the 
average of the explanatory values.



> newdata <- data.frame(Velocity = 600) 
> newdata 
  Velocity 
1      600 

> predict(fit, newdata, interval = "confidence") 
      fit     lwr     upr 
1 1.22286 1.02077 1.42495

Make a new data.frame with the explanatory variable we 
want to estimate

Name needs to match 

column in original data.frame

What is a 95% CI for the mean distance of a nebula 
with velocity of 600 km/sec?

With 95% confidence, the mean distance of a nebula with 
a velocity of 600km/sec is between 1.02 and 1.42 parsecs 

from Earth.



Your turn
Which will have the larger standard error:


estimating the mean distance at a velocity of 200km/sec,

or estimating the mean distance at a velocity of 1000km/sec?



Your turn
> newdata2 <- data.frame(Velocity = c(200, 1000)) 

> predict(fit, newdata2, se = TRUE) 
$fit 
        1         2  
0.6736854 1.7720343  

$se.fit 
         1          2  
0.09156133 0.16480835  

Two values



qplot(Velocity, Distance, data = case0701) + 
    geom_smooth(method = "lm")

Band gives 95% CI 

for mean response

CI on mean response: likely range for the center of our subpopulations



Prediction of new response
uncertainty comes from sampling variability 


in both parameters

and variability in subpopulations
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Predicting a new response
For a new response, it's estimate will be 
the estimated mean at the explanatory 
value.


Pred(Y|X0) = μ̂{Y|X0} = β0̂ + β1̂X0 

It's standard error will be larger because 
we need to add the uncertainty due to 
the variation of the response around 
the mean (σ).



Standard error on prediction

Once again, the estimate minus the parameter, 
divided by the standard error, has a Student's 
t-distribution with n - 2 degrees of freedom.

β0̂ + β1̂X0 ± qt(0.975, n - 2) SEPred{Y|X0}

Leads to 95% prediction intervals

always bigger than the SE on the mean response

We are more uncertain about the response of a single unit with explanatory value X0, 

than we are about the mean of all units with the explanatory value, X0



> predict(fit, newdata, interval = "prediction") 

      fit       lwr      upr 
1 1.22286 0.3590542 2.086666

What is a 95% prediction interval for the distance of a 
nebula with velocity of 600 km/sec?

A 95% prediction interval for the distance of a nebula with 
a velocity of 600km/sec is between 0.36 and 2.09 parsecs 

from Earth.



Prediction interval

for new response

Confidence interval

on mean

(0.36, 2.09)

(1.02, 1.42)

PI on response: likely range for observations from our subpopulations


